
DAY 3 

Monday, July 24th, 2006 

 
I. Lecture: (total 47 slides) 

I.1. Multiresolution Analysis (MRA): (22/22 slides) 

1. Requirements for MRA 

2. Nested Spaces and Complementary Spaces 

3. Scaling Functions and Wavelets 

I.2. Refinement Equation: (18/25 slides) 

1. Interative and Recursive Solution Techniques 

2. Infinite Product Formula 

3. Filter Bank Approach for Computing Scaling Functions and Wavelets   

Link: 

� http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-327Wavelets--Filter-Banks-
and-ApplicationsSpring2003/B4C7391D-94B8-47E9-A677-
9282AC95E9CF/0/Slides9.pdf    

� http://ocw.mit.edu/NR/rdonlyres/Mathematics/18-327Wavelets--Filter-Banks-
and-ApplicationsSpring2003/D7C1D6B6-159D-43E6-82FC-
497EA758554A/0/Slides10.pdf    

 Exercise and Lab:  

I.2. Exercise:  

1. Problem Set 6.1: 

Problem 1: Explain why the scaling requirement, that )(tf  is in jV  if and only if 

)2( tf  is in 1+jV , can be restated as )(
^

ωf  is in jV
^

 if and only if )2(
^

ωf  is in 1

^

−jV  

. Here jV
^

 is the space of Fourier transforms of functions in jV . 

Problem 2: Find 2 by 2 matrices )0(c  and )1(c  so that the box function )(1 tφ  and 

sloping line tt 21)(2 −=φ  satisfy 
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2. Problem Set 6.2:  

Problem 5: Suppose the filter coefficients )(kh  are 
2

1
,0,0,

2

1
. Starting from 

the box function, take one step of the cascade algorithm and draw )()1( tφ . Then 

take the second step and draw )()2( tφ . Describe )()( tiφ  - on what fraction of the 

interval [ ]3,0  does 1)()( =tiφ ? 

Problem 6: Suppose the only filter coefficient is 1)0( =h . Starting from the box 

function )()0( tφ , draw the graphs of )()1( tφ  and )()2( tφ . In what sense does 

)()( tiφ  converse to the delta function )(tδ ? To verify the dilation equation 
)2(2)( tt δδ = , multiply by the any smooth )(tf  and compare the integrals of 

both sides. 

3. Problem Set 6.3:  

Problem 3: Show that the convolution )(*)( 21 tt φφ  does satisfy a dilation equation 

with the coefficients from 21 * hh . 

4. Problem Set 6.4:  

Problem 4: If  )(ωH  has p  zeros at πω = , show that )(
^

ωφ  has p  zeros at 
πω n2=  for each 0≠n . 

I.3. Matlab:  

1. 1-D signal analysis using Wavelets: 

� Use biorwavf.m to generate symmetric biorthogonal wavelet filters with Nr = 
4 is number of zeros at pi in the synthesis lowpass filter and Nd =4 is number 
of zeros at pi in the analysis lowpass filter. 

� Find and plot the zeros of the synthesis and analysis lowpass filters. 

� Use biorfilt.m to find and plot the impulse response of the complete set of 
filters. 

� Examine the frequency response of the filters. 

� Load a test signal using: load noisdopp; x = noisdopp; 

� Compute the lowpass and highpass coefficients using convolution and  
downsampling. 

� Obtain the same result by directly using the function dwt.m.  

� Reconstruct the signal using upsamping and convolution. Only keep the 
middle L coefficients of the reconstructed signal i.e. the ones that correspond 
to the original signal. 

� Reconstruct the signal by using the function idwt.m. 

� Plot the input and output signal and the lowpass and highpass coefficients. 



� Draw the structure of the iterated analysis filter bank of a three level 
decomposition by using wtree.m. 

� Use wavedec.m to find the the vector wc of wavelet transform coefficients of 
the input signal. 

� Use the functions appcoe.m and detcoef.m to extract the lowpass coefficients 
a3 and the various highpass coefficients d3, d2, d1 from wc. Then plot them. 

� Reconstruct the signal from the lowpass coefficients a3 and the various 
highpass coefficients d3, d2, d1 by using upcoef.m. 

� Reconstruct the signal from the from the full vector wc of transform 
coefficients by using wrcoef.m. 

� Compare the error between the reconstructed signal and the original signal by 
using upcoef.m and wrcoef.m.  

2. Practical problem:  

Description: Voice scrambling techniques were widely used in World War II to 
secure telephone conversation. These scramblers operated by a number of 
principles. One was the manipulation of the “subbands” of speech on a telephone. 
A voice audio signal is a very complicated and unpredictable waveform, but it can 
be broken down into a set or “spectrum” of different simple “component” 
waveforms with a range of frequencies, with the spectrum changing over time.  

The highest frequencies in normal human voice conversations range to over 7,000 
hertz (Hz), but most of the higher frequencies don’t make much difference, and so 
telephones only transmit in the “frequency band” between 300 Hz and 3,300 Hz. 
As anyone who uses a phone knows, this is perfectly adequate for speech 
communications, though it’s certainly not high-fidelity sound. It is possible to 
shift out different “subbands” from the voice signal using electronic filters. For 
example, we could build a set of five filters to tear apart the spectrum of the voice 
signal as follows:  

� Filter 1: 300 to 900 Hz 

� Filter 2: 900 to 1,500 Hz 

� Filter 3: 1,500 to 2,100 Hz 

� Filter 4: 2,100 to 2,700 Hz 

� Filter 5: 2,700 to 3,300 Hz 

These five subband signals could then be “modulated”, or shifted in frequency, in 
various ways and mixed back together again to generate sounds that are hopefully 
incomprehensible to any eavesdropper. A parallel set of subband filters in the 
decoder would then sort out the scrambled speech and reassemble it correctly.  

One simple subband scrambling scheme simply “inverted” the subbands, 
converting the output of filter 1 to the 2,700 to 3,300 Hz range, converting the 
output of filter 5 to the 300 to 900 Hz range, and so on. Another simple approach 



was to shift the output of filters 1 through 4 up a subband, and convert the output 
of filter 5 to the 300 to 900 Hz range.  

Your task: 

� Design a 2-channel filter bank to split the sound signal )(nx  into 2 subband 

signals )(0 nv  and )(1 nv , then suppose a sophisticated way to merge these 

subband signals (both intra and inter signal) to form an encrypted signal )(ny .  

� Listen to your encrypted signal 

� Design a receiver to reconstruct this encrypted signal to the original sound. 
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